一个是学校团队做的项目,一个是企业团队做的项目,从直觉上讲,你会更信任哪个团队?为什么会这样认为呢?不同的人会有不同的想法和结论,也许你会认为学校团队做的更靠谱,尤其是Top X的学校的话,也许你会认为企业不论如何都做的会更专业些。但是总的来说,学校团队在做一个项目的过程中,往往会存在一些弊病,这些问题是企业团队做项目时很少会存在的问题。
对于刚开始接触语音领域的新人来说,如何学习入门是一个棘手的问题。AI柠檬博主经常在群里遇到询问如何入门语音识别或者有什么语音识别学习资料推荐的问题,那么今天博主就在这里做一些如何入门的介绍和相关资料的推荐吧。(纯干货)
AI柠檬博主在之前的一篇文章里讲了常见的MFCC、FBank、LogFBank等语音特征提取算法。不过ASRT语音识别系统在声学特征的提取上,使用的既不是大家所熟知的MFCC算法,也不是FBank(或LogFBank)算法,而是一种语谱图特征。不过这种语谱图特征也是AI柠檬博主从MFCC和FBank算法修改而来的,原则是保留更多的原始信息以供神经网络计算,避免经过人工特征设计的滤波器产生大量的信息损失。
几乎任何做自动语音识别的系统,第一步就是对语音信号,进行特征的提取。通过提取语音信号的相关特征,有利于识别相关的语音信息,并丢弃携带的其他不相关的所有信息,如背景噪声、情绪等。
我们都知道,人类说话是通过体内的发声器产生的初始声音,被包括舌头和牙齿在内的其他物体形成的声道的形状进行滤波,从而产生出各种各样的语音的。传统的语音特征提取算法正是基于这一点,通过一些数字信号处理算法,能够更准确地包含相关的特征,从而有助于后续的语音识别过程。常见的语音特征提取算法有MFCC、FBank、LogFBank等。
写了这么多博客文章了,源于最近的一些感悟,AI柠檬博主也想谈谈当我们在写技术博客的时候,其实真正意义上写的是什么。博客这种东西伴随着第一代互联网的诞生,就已经产生了,在早期的互联网,如果我们自己开设有自己的网络博客,尤其是一个自己的“xxx.com”域名,那是一件很有“范”儿的事情。然而,在最近的若干年以来,博客这类事物却在网络上变得少见了起来,取而代之的是各类平台上的XX号。
首先我们来明确一下基本概念,语音激活检测(VAD, Voice Activation Detection)算法主要是用来检测当前声音信号中是否存在人的话音信号的。该算法通过对输入信号进行判断,将话音信号片段与各种背景噪声信号片段区分出来,使得我们能够分别对两种信号采用不同的处理方法。
AI柠檬网站已经四岁啦!
2021年,AI柠檬网就满4周岁啦,过去的2020年真的是不平凡的一年呢!AI柠檬网站在过去的一年里运行较为平稳,在国内的云计算厂商阿里云和腾讯云的技术buff加持下,第一次实现了一整个自然年内没有出现任何大的运维事故(丢人了..)。只不过,一些人为或者非人为导致的小问题仍然偶有发生,好在影响面不大,也大都能及时解决掉。
写完前后端代码之后,这个项目的工作就算做完了?不,你的工作其实才刚开始,写完代码只是做下一步工作的必要条件。作为一个可实用的软件产品,你要做的工作是将“玩具汽车”变成真正可以上路跑的“汽车产品”。数据库是网站、APP等产品重要的底层核心支撑服务,为了将我们的项目变成生产级的产品和服务,在数据库方面进行性能优化是重要的一个环节,这里我们用最经典的MySQL来作为案例。
本文转载自:机器之心 · 阿里技术
https://www.jiqizhixin.com/articles/2019-12-25-2
阿里妹导读:作为在日常开发生产中非常实用的语言,有必要掌握一些python用法,比如爬虫、网络请求等场景,很是实用。但python是单线程的,如何提高python的处理速度,是一个很重要的问题,这个问题的一个关键技术,叫协程。本篇文章,讲讲python协程的理解与使用,主要是针对网络请求这个模块做一个梳理,希望能帮到有需要的同学。
一些细心的小伙伴们最近可能会发现,AI柠檬主要的网站时隔不到一年重新开始支持IPv6协议了。这一回,再次启动对IPv6的支持之后应该就不会去掉了,因为国内以及全球IPv6推进的进程已经加快,如今大多数云服务器和云产品都已经基本支持,不论今后如何维护服务器,这一点不会有太大变化了。