不久前, 上海交通大学的两位研究者发布了一项题为“利用脸部照片自动推断犯罪性”的研究,利用基于有监督的机器学习的方法,根据人的脸部特征预测一个人是否有犯罪倾向,“准确率接近90%”。该研究在国内外引起了广泛的争议。近日,谷歌的几名研究员撰文对这一研究进行了批驳,回顾了机器学习技术的底层运作方式和技术细节,并探讨机器学习等先进技术在融入现实中所遇到的难题和挑战。
分类: 评论型文章
我最近因为学习机器学习并且想要做一些实践项目而打算收集一些数据来做机器学习,但是发现,数据不是你想找,想找就能找的。在机器学习方面,用于训练的数据对于整个机器学习进程的重要意义自然不言而喻,而数据问题涉及到收集、存储、表示以及规模和错误率等多个方面。关于数据,我想谈一谈数据的收集问题。