在当前的计算机技术和互联网应用技术的发展浪潮之下,很多传统的线下物质资料记录存储方式逐步转移到了计算机设备(包含手机、平板、手环等)或者线上存储中,这种新的记录方式、无处不在的互联网应用和硬盘技术的发展,使得在计算机介质中生产、存储的个人数据规模变得越来越大。而且在企业数据的重要性越来越被得到认知从而出现“数据治理”这一概念的大背景下,个人数据也需要进行“数据治理”,从而提升我们生活的便捷性,享受科技发展带来的好处。
标签: 开源
AI柠檬之前发布过一篇总结有哪些开源的中文语音数据集的文章(详见:几个最新免费开源的中文语音数据集),这里我将再总结一些免费开源的英文语音数据集,以方便大家做科研和工程时能够使用到。并且这里列举出的英文语音数据集可以确保能够下载和使用,并且是免费开源的,下载链接见文末。
西安电子科技大学开源社区2019年一年一度的软件自由日再次来临,AI柠檬博主应邀参加,并做了主题为《ASRT和我的开源经历》的演讲,以下是PPT演讲的内容。
工欲善其事必先利其器,做机器学习,我们需要有利器,才能完成工作,数据就是我们最重要的利器之一。做中文语音识别,我们需要有对应的中文语音数据集,以帮助我们完成和不断优化改进项目。我们可能很难拿到成千上万小时的语音数据集,但是这里有一些免费开源的语音数据集,大家一定不要错过。文末附数据集下载地址。我们也非常感谢相关单位和团体为国内的开源界做出的贡献。
共20份数据集,2022年5月6日持续更新~
ASRT是一套基于深度学习实现的语音识别系统,全称为Auto Speech Recognition Tool,由AI柠檬博主开发并在GitHub上开源(GPL 3.0协议)。本项目声学模型通过采用卷积神经网络(CNN)和连接性时序分类(CTC)方法,使用大量中文语音数据集进行训练,将声音转录为中文拼音,并通过语言模型,将拼音序列转换为中文文本。算法模型在测试集上已经获得了80%的正确率。基于该模型,在Windows平台上实现了一个基于ASRT的语音识别应用软件,取得了较好应用效果。这个应用软件包含Windows 10 UWP商店应用和Windows 版.Net平台桌面应用,也一起开源在GitHub上了。
我最近因为学习机器学习并且想要做一些实践项目而打算收集一些数据来做机器学习,但是发现,数据不是你想找,想找就能找的。在机器学习方面,用于训练的数据对于整个机器学习进程的重要意义自然不言而喻,而数据问题涉及到收集、存储、表示以及规模和错误率等多个方面。关于数据,我想谈一谈数据的收集问题。