在DNN-HMM架构的语音识别系统的声学模型中,训练一个DNN模型通常需要先进行帧和标签的对齐操作,此时需要先使用GMM通过EM算法不断迭代实现。而且隐马尔可夫假设一直饱受诟病,随着深度学习的发展,尤其是基于CTC的CNN和RNN模型的出现,使得实现端到端的语音识别声学模型成为了可能。CTC由于其强大的在时间序列上进行标签自动对齐的能力,可被用于语音识别、图像验证码(或者文本)识别和视频手势识别(手语识别)等问题中。
分类: 机器学习及应用
RNN是循环神经网络的缩写,并且也是循环网络结构中的一种,我们通常使用这种网络模型来处理序列型的数据。语音识别处理的就是一个典型的有时间顺序的序列数据,自然语言文本也是。在一个普通的DNN网络中,层与层之间是全连接的,而每层中的神经元节点之间不存在任何连接,这样的一种普通DNN网络结构难以解决很多问题。以语音识别为例,不同时刻t的语音包含的字,在推理计算时,需要根据上下文来确定应该输出为什么字符,而且结果应当跟具体所在时刻t无关,否则会出现不同时间说相同的字会产生不同的识别输出的问题。
循环网络就解决了这个问题,这有点类似于隐马尔可夫模型,对于每一时刻的输入,所产生的输出值,不仅仅依赖于当前时刻t,还依赖于前N个时刻的输出值。这主要是通过在每一个循环层单元中,添加了一个记忆单元实现的。
卷积神经网络是模式识别分类常用的网络结构之一,在大规模的图像识别等方面有着很大的优势。本文将总结卷积层、反卷积层、感受野、权重参数数量等卷积神经网络相关的原理和计算过程。
在YOLOv4的论文中,有一个很重要的BoF技巧,就是马赛克数据增强。很多人刚听说马赛克数据增强的时候,不知道这究竟是一种什么样的数据增强方案,其实,它是CutMix之类的图片预处理方案的一种推广。
大家好,本次分享的是YOLOv4的那篇论文
GolnazGhiasi, Tsung-YiLin, QuocV.Le
Google Brain
摘要
当深度神经网络被过度参数化并经过大量噪声和正则化训练(例如权重衰减和dropout)时,它们通常可以很好地工作。尽管Dropout被广泛用作全连接层的正则化技术,但对于卷积层而言,效果通常较差。卷积层Dropout的不太成功可能是由于以下事实:卷积层中的激活单元在空间上相关,因此尽管有丢失,信息仍可以通过卷积网络流动。因此,需要结构化的Dropout形式来规范卷积网络。在本文中,我们介绍了DropBlock,这是一种结构化的Dropout形式,其中特征图的连续区域中的单元被一起Drop掉。我们发现,在卷积层之外的跳过连接中应用DropbBlock可以提高准确性。同样,在训练过程中逐渐增加的Drop单元数量会产生更佳的准确性和对超参数选择的鲁棒性。大量的实验表明,在正则化卷积网络中,DropBlock的效果要优于Dropout。在ImageNet分类中,带有DropBlock的ResNet-50体系结构可实现78.13%的准确度,比基线提高了1.6%以上。在COCO检测时,DropBlock将RetinaNet的平均精度从36.8%提高到38.4%。
Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V. Le. “Dropblock: A regularization method for convolutional networks.” Advances in Neural Information Processing Systems. 2018.
卷积层Dropout的不太成功可能是由于以下事实:卷积层中的激活单元在空间上相关,因此尽管有丢失,信息仍可以通过卷积网络流动。所以我们需要使用一个新的可以用于卷积层的Drop方法。
摘要: 在使用机器学习处理一些实际场景中的任务时,往往会面临可获取的数据量不多的问题,而生物信息学就是这样的一个领域。生物信息学相关数据的样本量有限,而且往往样本正反例不平衡,主要为正例样本,并且数据的标注成本较高,而迁移学习技术使得在这样的条件下进行机器学习成为了可能。本文主要论述使用迁移学习进行生物信息学研究的可行性、有效性和重要性。
关键词: 生物信息学; 迁移学习
本文为论文 Generative Adversarial Nets 的翻译文
论文原文链接: https://arxiv.org/abs/1406.2661
Ian J. Goodfellow∗, Jean Pouget-Abadie†, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair‡, Aaron Courville, Yoshua Bengio§
Departement d’informatique et de recherche op´ erationnelle´
Universite de Montr´ eal´
Montreal, QC H3C 3J7´
近日,AI柠檬博主在西电华为俱乐部进行了关于深度学习应用相关的演讲,与各位同学分享深度学习的发展和最新应用,以下是演讲的全部PPT内容。