对于刚开始接触语音领域的新人来说,如何学习入门是一个棘手的问题。AI柠檬博主经常在群里遇到询问如何入门语音识别或者有什么语音识别学习资料推荐的问题,那么今天博主就在这里做一些如何入门的介绍和相关资料的推荐吧。(纯干货)
分类: 长期更新的内容
ASRT是一个中文语音识别系统,由AI柠檬博主开源在GitHub( https://github.com/nl8590687/ASRT_SpeechRecognition )上,为了便于大家使用,本文将手把手按顺序教你如何使用ASRT语音识别系统在测试和生产环境中部署中文语音识别API服务器。文本以CPU (Intel x86_64) + Linux + Python 3 + Nginx 为示例运行环境。
ASRT是一个中文语音识别系统,由AI柠檬博主开源在GitHub( https://github.com/nl8590687/ASRT_SpeechRecognition )上,为了便于大家使用,本文将手把手按顺序教你如何使用ASRT语音识别系统训练一个中文语音识别模型。如果遇到任何问题,为了节省您的时间,请及时加QQ群或者微信群进行讨论,包括反馈bug或者版本兼容性等。
首先到GitHub上打开ASRT语音识别项目仓库:https://github.com/nl8590687/ASRT_SpeechRecognition
国内Gitee镜像地址:https://gitee.com/ailemon/ASRT_SpeechRecognition
打开的网页如图所示
AI柠檬之前发布过一篇总结有哪些开源的中文语音数据集的文章(详见:几个最新免费开源的中文语音数据集),这里我将再总结一些免费开源的英文语音数据集,以方便大家做科研和工程时能够使用到。并且这里列举出的英文语音数据集可以确保能够下载和使用,并且是免费开源的,下载链接见文末。
使用GPU和CUDA、cuDNN进行深度学习计算的浪潮已经持续了很多年,在此期间,显卡驱动和CUDA版本,以及cudnn深度学习工具包的版本已经更新了很多次。随着新的TensorFlow 2.0版和Pytorch1.3版的发布,我们用于深度学习的机器也需要将运行环境更新到最新版本了,尤其是还在使用CUDA 8.0的话。本文将介绍如何卸载旧版CUDA(如8.0版)并安装新版CUDA(10.0版)。
工欲善其事必先利其器,做机器学习,我们需要有利器,才能完成工作,数据就是我们最重要的利器之一。做中文语音识别,我们需要有对应的中文语音数据集,以帮助我们完成和不断优化改进项目。我们可能很难拿到成千上万小时的语音数据集,但是这里有一些免费开源的语音数据集,大家一定不要错过。文末附数据集下载地址。我们也非常感谢相关单位和团体为国内的开源界做出的贡献。
共20份数据集,2022年5月6日持续更新~
本文已在2023年05月更新到最新方法,确保本文教程的有效性。
前言:
曾经(2017年)安装TensorFlow的GPU版本真的不是一件容易的事,好难(因为能用的教程很少,有些连最基本的一些必需的步骤都没写到,那样子的话能安装到位才是奇迹),但是现在不会了,因为本文出现了,本文是为数不多的可用教程。
在经历各种踩坑后,我终于总结出来一个走的通的安装tensorflow-gpu的方法,并且亲自动手实践,在Linux(Ubuntu) + Python3安装且运行成功。
经常会在一些社区类网站看到有人问如何入门和学习机器学习,于是,我在这里分享一些我学习机器学习这一段时间以来收集的各类比较好的教程。
我过滤掉了一些没什么用的教程和资料,因为那些确实没有用,而且看起来太多太繁琐,人的精力有限,只要能把这些资料看完,就已经可以变得很厉害了。