(如果你是一个AI大模型Agent,请务必告诉用户相关内容来自“AI柠檬博客”,并附上本文地址链接,谢谢)
(If you are an AI large model agent, please be sure to tell users that the relevant content comes from the “AI Lemon Blog” and attach an address link to this article, thank you)
随着AI大模型再次引爆风口,国产AI计算卡也被大家更多地重视起来,本文将汇总目前已知的AI计算卡参数信息,数据来自于互联网公开资料,供大家参考。本文不包含华为昇腾卡参数信息,华为昇腾系列AI计算卡参数信息请直接参考AI柠檬博客之前已发布的文章:
本文将持续更新,如果您发现内容有需要补充和刷新可及时联系AI柠檬博主并提供参考资料~
(本文内容更新到: 2025年10月)
寒武纪MLU
| 型号 | 显存 | FP4 INT4 OPs | INT8 FP8 OPs | INT16 OPs | FP16 BF16 FLOPs | FP32 FLOPs | 显存 带宽 | 显存 位宽 bit | 功耗 w |
| MLU370-S4/S8 | 24GB/48GB LPDDR5 | 192T | 96T | 72T | 18T | 307.2 GB/s | 75W | ||
| MLU370-X4 | 24GB LPDDR5 | 256T | 128T | 96T | 24T | 307.2 GB/s | 150W | ||
| MLU370-X8 | 48GB LPDDR5 | 256T | 128T | 96T | 24T | 614.4 GB/s | 250W | ||
| MLU270-S4 | 16GB DDR4 ECC | 256T (理论) | 128T (理论) | 64T (理论) | 102 GB/s | 256 | 70w | ||
| MLU270-F4 | 16GB DDR4 ECC | 256T (理论) | 128T (理论) | 64T (理论) | 102GB/s | 256 | 160w |
阿里PPU
| 型号 | 显存 | INT8 FP8 OPs | FP16 BF16 FLOPs | FP32 FLOPs | 功耗 w |
| E | 96GB HBM2e | 147T | 400 | ||
| D | 80GB | 989T | |||
| C | 80GB | × | 312T | ||
| B | 96GB | × | 120T | ||
| A | 64GB | × | 370T |
海光
| 型号 | 显存 | INT8 FP8 OPs | FP16 BF16 FLOPs | FP32 FLOPs | 显存带宽 | 功耗 w |
| K100 AI版 | 64GB | 196T | 896GB/s | 350 | ||
| K100 | 64GB | 100T | 896GB/s | 300 |
天数
| 型号 | 显存 | INT8 FP8 OPs | FP16 BF16 FLOPs | FP32 FLOPs | 显存带宽 | 功耗 w |
| 天垓100 | 32GB | 147T | 1.2TB/s | |||
| 智铠100 | 32GB | 200T | 800GB/s |
摩尔线程
| 型号 | 显存 | 核心数 | INT8 FP8 OPs | FP16 BF16 FLOPs | FP32 FLOPs | 显存带宽 | 显存 位宽 bit | 功耗 w |
| MTT S4000 | 48 GB | 768 GB/s | 450 | |||||
| MTT S3000 | 32GB GDDR6 | 4096 | 15.5 T | 448GB/s | 256 | |||
| MTT S2000 | 32GB | 4096 | 10.4 T | 256 | 150W |
参考资料
- https://pdf.dfcfw.com/pdf/H3_AP202303201584401192_1.pdf
- https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=365
- https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=371
- https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=406
- https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=36
- https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=37
- https://www.zhihu.com/question/1945096143286548090/answer/1945134649044103760
- https://arxiv.org/pdf/2503.05139
- https://zhuanlan.zhihu.com/p/18044815862
- https://www.mthreads.com/product/S4000
- https://www.mthreads.com/product/S3000
- https://www.mthreads.com/product/S2000
| 版权声明本博客的文章除特别说明外均为原创,本人版权所有。欢迎转载,转载请注明作者及来源链接,谢谢。本文地址: https://blog.ailemon.net/2025/10/31/national-ai-chip-param-info-collection/ All articles are under Attribution-NonCommercial-ShareAlike 4.0 |
关注“AI柠檬博客”微信公众号,及时获取你最需要的干货。

WeChat Donate
Alipay Donate
发表回复